LcrV mutants that abolish Yersinia type III injectisome function.

نویسندگان

  • Katherine Given Ligtenberg
  • Nathan C Miller
  • Anthony Mitchell
  • Gregory V Plano
  • Olaf Schneewind
چکیده

LcrV, the type III needle cap protein of pathogenic Yersinia, has been proposed to function as a tether between YscF, the needle protein, and YopB-YopD to constitute the injectisome, a conduit for the translocation of effector proteins into host cells. Further, insertion of LcrV-capped needles from a calcium-rich environment into host cells may trigger the low-calcium signal for effector translocation. Here, we used a genetic approach to test the hypothesis that the needle cap responds to the low-calcium signal by promoting injectisome assembly. Growth restriction of Yersinia pestis in the absence of calcium (low-calcium response [LCR(+)] phenotype) was exploited to isolate dominant negative lcrV alleles with missense mutations in its amber stop codon (lcrV(*327)). The addition of at least four amino acids or the eight-residue Strep tag to the C terminus was sufficient to generate an LCR(-) phenotype, with variant LcrV capping type III needles that cannot assemble the YopD injectisome component. The C-terminal Strep tag appears buried within the cap structure, blocking effector transport even in Y. pestis yscF variants that are otherwise calcium blind, a constitutive type III secretion phenotype. Thus, LcrV(*327) mutants arrest the needle cap in a state in which it cannot respond to the low-calcium signal with either injectisome assembly or the activation of type III secretion. Insertion of the Strep tag at other positions of LcrV produced variants with wild-type LCR(+), LCR(-), or dominant negative LCR(-) phenotypes, thereby allowing us to identify discrete sites within LcrV as essential for its attributes as a secretion substrate, needle cap, and injectisome assembly factor.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

LcrV, a substrate for Yersinia enterocolitica type III secretion, is required for toxin targeting into the cytosol of HeLa cells.

Pathogenic Yersinia species employ type III machines to transport virulence factors across the bacterial envelope. Some substrates for the type III machinery are secreted into the extracellular medium, whereas others are targeted into the cytosol of host cells. We found that during infection of tissue culture cells, yersiniae secrete small amounts of LcrV into the extracellular medium. Knockout...

متن کامل

Interactions of the type III secretion pathway proteins LcrV and LcrG from Yersinia pestis are mediated by coiled-coil domains.

The type III secretion system is used by pathogenic Yersinia to translocate virulence factors into the host cell. A key component is the multifunctional LcrV protein, which is present on the bacterial surface prior to host cell contact and up-regulates translocation by blocking the repressive action of the LcrG protein on the cytosolic side of the secretion apparatus. The functions of LcrV are ...

متن کامل

LcrV synthesis is altered by DNA adenine methylase overproduction in Yersinia pseudotuberculosis and is required to confer immunity in vaccinated hosts.

Yersinia pseudotuberculosis mutants that overproduce the DNA adenine methylase (DamOP Yersinia) are attenuated, confer robust protective immune responses, and synthesize or secrete several Yersinia outer proteins (Yops) under conditions that are nonpermissive for synthesis and secretion in wild-type strains. To understand the molecular basis of immunity elicited by DamOP Yersinia, we investigat...

متن کامل

YscU recognizes translocators as export substrates of the Yersinia injectisome.

YscU is an essential component of the export apparatus of the Yersinia injectisome. It consists of an N-terminal transmembrane domain and a long cytoplasmic C-terminal domain, which undergoes auto-cleavage at a NPTH site. Substitutions N263A and P264A prevented cleavage of YscU and abolished export of LcrV, YopB and YopD but not of Yop effectors. As a consequence, yscU(N263A) mutant bacteria ma...

متن کامل

Hijacking of the Pleiotropic Cytokine Interferon-γ by the Type III Secretion System of Yersinia pestis

Yersinia pestis, the causative agent of bubonic plague, employs its type III secretion system to inject toxins into target cells, a crucial step in infection establishment. LcrV is an essential component of the T3SS of Yersinia spp, and is able to associate at the tip of the secretion needle and take part in the translocation of anti-host effector proteins into the eukaryotic cell cytoplasm. Up...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 4  شماره 

صفحات  -

تاریخ انتشار 2013